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Abstract

We consider the solution of the Saint-Venant equations with topographic source terms on 2D unstructured meshes

by a finite volume approach. We first present a stable and positivity preserving homogeneous solver issued from a

kinetic representation of the hyperbolic conservation laws system. This water depth positivity property is important

when dealing with wet–dry interfaces. Then, we introduce a local hydrostatic reconstruction that preserves the positivity

properties of the homogeneous solver and leads to a well-balanced scheme satisfying the steady-state condition of still

water. Finally, a formally second-order extension based on limited reconstructed values on both sides of each interface

and on an enriched interpretation of the source terms satisfies the same properties and gives a noticeable accuracy

improvement. Numerical examples on academic and real problems are presented.
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1. Introduction

We consider in this article the 2D Saint-Venant system with topographic source term. This hyperbolic

system of balance laws was introduced in [42] and is very commonly used for the numerical simulation

of various geophysical shallow-water flows, such as rivers, lakes or coastal areas, or even oceans, atmo-

sphere or avalanches [8,24] when completed with appropriate terms. It can be derived as a formal first-order

approximation of the three-dimensional free surface incompressible Navier–Stokes equations, using the
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so-called shallow water assumption [16,21]. Usually, several other terms are added in order to take into

account frictions on the bottom and the surface and other physical features. One can also describe the evo-

lution of a temperature (or a concentration of a pollutant) advected by the flow by adding a third equation

to the system [4,14].

The difficulty to define accurate numerical schemes for such hyperbolic systems is related to their deep
mathematical structure. The first existence proof of weak solutions after shocks in the large is due to Lions

et al. [34] in 1996. It is based on the kinetic interpretation of the system which is also a method to derive

numerical schemes with good stability properties, such as positivity of the water depth, ability to compute

dry areas, and eventually to satisfy a discrete entropy inequality.

In the context of the discretization of hyperbolic systems of balance laws another fundamental point is to

get schemes that satisfy the preservation of steady-states such as still water equilibrium in the context of the

Saint-Venant system. The difficulty to build such schemes was pointed out by several authors and led to the

notion of well-balanced schemes. Different approaches to satisfy the well-balanced property have been pro-
posed. The Roe solver [40] has been modified in order to preserve steady-states by Bermudez and Vasquez

[6]. A two-dimensional extension is performed by Bermudez et al. [5] and recent extensions to other types of

homogeneous solvers can be found in [12,13]. Leveque [33] and Jin [29] propose other ways to adapt exact

or approximate Riemann solver to the non-homogeneous case. Following the idea of Leroux and Green-

berg [20] for the scalar case, Gosse [18,19] and Gallouët et al. [17] construct numerical schemes based on the

solution of the – exact or approximate – Riemann problem associated with a larger system where a third

equation on the variable describing the bottom topography is added. Approaches based on central schemes

are used in [31] or [41] and Perthame and Simeoni [39] propose a kinetic method that includes the source
terms in the kinetic formulation (see also [11]).

Most of the works mentioned above are entirely devoted to the well-balancing property and do not treat

the stability problems. Among the Riemann solvers, only the Godunov method [20] preserves positivity but

it leads to quite complex and time consuming algorithms. Some other approaches are more successful, but

to the best of our knowledge, they are restricted to one-dimensional problems (kinetic interpretation of the

source terms [39]) or to cartesian two-dimensional grids (central schemes [31]).

In this paper, we propose a new finite volume method for the 2D Saint-Venant system with source terms

that ensures well-balancing and positivity of the water depth and that allows us to deal with unstructured
meshes. Our method is based on a kinetic solver and a hydrostatic reconstruction procedure.

Considering the homogeneous Saint-Venant equations we first present their kinetic interpretation and

how this can be used to deduce a macroscopic finite volume kinetic solver. The solver has good stability

properties as the inherent preservation of the water depth positivity even when applications with dry areas

are considered. The kinetic schemes were first developed in the context of the Euler equations [36,30,38] and

we present their adaptation to the Saint-Venant system. We refer to Perthame [37] for a complete survey of

the theoretical properties of the kinetic schemes. We also present many original developments in order to

take into account the boundary conditions, reduce the diffusion of the scheme or increase the efficiency of
the method.

Second we consider the Saint-Venant system with source terms and we present a hydrostatic recon-

struction strategy which allows us to extend any positivity preserving homogeneous scheme to a positiv-

ity preserving well-balanced scheme. The idea is to use the relation associated to the equilibrium to

define new interface values that will be used in the definition of the finite volume fluxes and of the

source terms. This part is an extension to two-dimensional problems of what is presented in [3] for

the 1D case.

We finally present and describe a conservative and positivity preserving formally second-order extension

on unstructured two-dimensional meshes, based on linear reconstruction procedures. By introducing an en-

riched discretization of the source terms we construct a stable and well-balanced ‘‘second-order’’ scheme.

Some academic numerical tests give precise information about the improvement on the accuracy of the
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results. Some numerical tests on real problems show that the method can be applied to very complex

problems.

We present in this paper all the points mentioned above. We especially concentrate on the implementa-

tion of the method but we also (at least briefly) describe all the theoretical points that are necessary to make

this article self-contained. The outline is as follows. We present the 2D shallow water equations and their
main properties in Section 2. Thereafter, we introduce the homogeneous two-dimensional kinetic solver in

Section 3, including 2D finite volume formalism, 2D kinetic interpretation of the Saint-Venant system and a

precise description of the numerical implementation (boundary conditions, upwinding for the tangential

velocity). Section 4 introduces the hydrostatic reconstruction and we present a positivity preserving well-bal-

anced kinetic scheme which is adapted to the still water steady-state. We develop formally second-order

extension of the scheme and we show its property in Section 5. Section 6 presents numerical results on ide-

alized and real tests. We present in Appendix A the detailed proofs concerning the water depth positivity

and the well-balancing property.
2. The Saint-Venant system

2.1. Equations

We consider the 2D Saint-Venant system, written in conservative form – see [21,16]
oh
ot

þ divðhuÞ ¼ 0; ð2:1Þ

ohu
ot

þ divðhu� uÞ þ r g
2
h2

� �
þ ghrZ ¼ 0; ð2:2Þ
where h(t,x,y) P 0 is the water depth, u(t,x,y) = (u,v)T the flow velocity, g the acceleration due to gravity

and Z(x,y) the bottom topography, and therefore h + Z is the water surface level (see Fig. 1). We denote

also q(t,x,y) = (qx,qy)
T = h(t,x,y)u(t,x,y) the flux of water.

To obtain a well-posed problem we add to this system some initial conditions
hð0; x; yÞ ¼ h0ðx; yÞ; uð0; x; yÞ ¼ u0ðx; yÞ; ð2:3Þ

and boundary conditions. In this paper, we consider only two types of boundaries: solid walls on which we

prescribe a slip condition u Æ n = 0 with n the unit outward normal to the boundary, and fluid boundaries on
which we prescribe zero, one or two of the following conditions depending on the type of the flow (fluvial or

torrential): water level h + Z given, flux q given.
Fig. 1. Shallow water description of a free surface flow.
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2.2. Properties of the system

The system (2.1), (2.2) is a first-order hyperbolic system of balance laws and can be written in the general

form
oU

ot
þ divFðUÞ ¼ BðUÞ; ð2:4Þ
with U = (h,qx,qy)
T and
FðUÞ ¼

qx qy
q2x
h þ

g
2
h2

qxqy
h

qxqy
h

q2y
h þ

g
2
h2

0BB@
1CCA; BðUÞ ¼

0

�ghoxZ

�ghoyZ

0B@
1CA: ð2:5Þ
We mention now some important properties of the system (2.1), (2.2) that have to be taken into account to

construct a well-adapted numerical solver.

This system is strictly hyperbolic for h > 0 (see [9]). Moreover, it admits an invariant region h(t,x) P 0, the

water depth h can indeed vanish (flooding zones, dry regions, tidal flats) and the system loses hyperbolicity

at h = 0 which generates theoretical and numerical difficulties.

Another important property is related to the source terms: the Saint-Venant system admits non-trivial

steady-states. They are characterized by
divðhuÞ ¼ 0; rP � curl u
v

u

� �
¼ 0;
where
P ðx; yÞ ¼ juj2

2
þ gðhþ ZÞ:
It follows in particular that P is constant along streamlines and in the irrotational areas. Due to the com-

plexity of the general equilibria and because of its importance in the applications we are interested partic-

ularly in one of these equilibria: the so-called still water steady-state
u ¼ 0; hþ Z ¼ H ; ð2:6Þ

where H is a constant.

Note that for 1D flows, general steady-states are characterized by the simpler relations: hu(x) = C1,

P(x) = C2, where C1 and C2 are two constants, and can be exactly computed by adapted numerical schemes

– see [17,19]. These relations are used in Section 6 to compute the exact solution of the 1D flows in a 2D

channel with a bump at the bottom.
3. Homogeneous scheme: the kinetic solver

In this section, we present a positivity preserving numerical discretization for the homogeneous system of

Eq. (2.4) with B = 0. A classical approach for solving hyperbolic systems consists of using finite volume

schemes (see [22,32,7]) which are defined by the fluxes computed at the control volume interfaces. We recall

the 2D formalism of this method in Section 3.1. Then, we present in Section 3.2 a kinetic equation deduced

from a kinetic interpretation of the Saint-Venant system. In Section 3.3, we show how the fluxes of the finite
volume kinetic solver are deduced from the discretization of this kinetic equation. In Sections 3.4–3.6, we
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describe the numerical implementation and in Section 3.7 we prove that this scheme preserves the positivity

of the water depth.

3.1. 2D finite volume formalism

We recall here the general formalism of finite volumes. Let X denote the computational domain with

boundary C, which we assume is polygonal. Let Th be a triangulation of X for which the vertices are de-

noted by Pi with Si the set of interior nodes and Gi the set of boundary nodes. The dual cells Ci are obtained

by joining the centers of mass of the triangles surrounding each vertex Pi. We use the following notations

(see Fig. 2):

� Ki, set of subscripts of nodes Pj surrounding Pi,

� |Ci|, area of Ci,
� Cij, boundary edge between the cells Ci and Cj,

� Lij, length of Cij,

� nij, unit normal to Cij, outward to Ci (nji=�nij).

If Pi is a node belonging to the boundary C, we join the centers of mass of the triangles adjacent to the

boundary to the middle of the edge belonging to C (see Fig. 3) and we denote

� Ci, the two edges of Ci belonging to C,
� Li, length of Ci (for sake of simplicity we assume in the following that Li = 0 if Pi does not belong to C),
� ni, the unit outward normal defined by averaging the two adjacent normals.
Fig. 2. Dual cell Ci.

Fig. 3. Boundary cell Ci.
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Let Dt be the timestep, we set tn = nDt. We denote by Un
i the approximation of the cell average of the

exact solution at time tn
Un
i ’

1

jCij

Z
Ci

Uðtn; xÞ dx: ð3:1Þ
We integrate in space and time, Eq. (2.4) on the set Ci · (tn, tn + 1) and integrating by parts the divergence

term, we obtain
Z
Ci

Uðtnþ1; xÞ dx�
Z
Ci

Uðtn; xÞ dxþ
Z tnþ1

tn

Z
oCi

FðUÞ � n dx dt ¼ 0: ð3:2Þ
So we can write
Unþ1
i ¼ Un

i �
X
j2Ki

rijF ðUn
i ;U

n
j ; nijÞ � riF ðUn

i ;U
n
e;i; niÞ; ð3:3Þ
with
rij ¼
DtLij

jCij
; ri ¼

DtLi

jCij
: ð3:4Þ
In (3.3) the term F(Ui,Uj,nij) denotes an interpolation of the normal component of the flux F(U) Æ nij along the
edge Cij. This interpolation is usually performed using a one-dimensional solver since locally the problem

looks like a planar discontinuity. In the next subsections we define F(Ui,Uj,nij) using the kinetic interpretation

of the system. The computation of the valueUe,i, which denotes a value outsideCi defined such that the bound-

ary conditions are satisfied, and the definition of the boundary flux F(Ui,Ue,i,ni) are described in Section 3.6.

3.2. Kinetic interpretation of the Saint-Venant system

Here, we introduce a kinetic approach to the homogeneous version of the system (2.1), (2.2) and in the

next subsection we deduce from the discretization of the corresponding kinetic equation, a kinetic solver for

this system.

Let v(w) be a positive, even and compactly supported function defined on IR2, i.e.
vðwÞ ¼ vð�wÞ P 0; ð3:5Þ

9wM 2 R; such that vðwÞ ¼ 0 for kwk P wM : ð3:6Þ

We also assume that
Z

R2

1

wiwj

� �
vðwÞ dw ¼

1

dij

� �
ð3:7Þ
with dij the Kronecker symbol.

An example of function v satisfying these properties is
vðwÞ ¼ 1

12
1Ijwi j6

ffiffi
3

p ; i ¼ 1; 2: ð3:8Þ
We introduce a microscopic density of particles M(t,x,n) at time t, in position x and with kinetic velocity n.
It is defined by a so-called Gibbs equilibrium
Mðt; x; nÞ ¼ Mðh; n� uÞ ¼ hðt; xÞ
2

v
n� uðt; xÞ
� �

; ð3:9Þ

~c ~c
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with ~c defined by
~c2 ¼ gh
2
: ð3:10Þ
With these definitions we can write a kinetic interpretation of the system (2.1), (2.2). Indeed the Saint-

Venant system can be seen as an integration in n against (1,n)T of the following kinetic equation:
oM
ot

þ n � rxM ¼ Qðt; x; nÞ; ð3:11Þ
where the ‘‘collision term’’ Q(t,x,n) satisfies for a.e. (t,x),
Z
R2

1

n

� �
Q dn ¼ 0: ð3:12Þ
Indeed from the definition of M (3.9), the properties of v (3.5)–(3.7) and from (3.12), we deduce:
h

q
q�q

h þ g
2
h2Id

0B@
1CA ¼

Z
R2

1

n

n� n

0B@
1CAMðnÞ dn: ð3:13Þ
This equivalency produces a very useful consequence: the nonlinear system (2.1), (2.2) can be viewed as a

linear transport equation (3.11) on a nonlinear quantity M, for which it is easier to find a simple numerical

scheme with good theoretical properties. Since the Saint-Venant system results from an integration in n of

the kinetic equation, an integration of the numerical scheme for the kinetic equation (3.11) provides a solver

that is consistent with the Saint-Venant system and that presents interesting stability properties.

Remark 3.1. It is also possible to introduce a kinetic interpretation of the 2D Saint-Venant system (2.1),

(2.2) including the topographic source terms. In [39] the authors use such a 1D kinetic interpretation to

derive their kinetic solver. It is a very elegant way to discretize the full Saint-Venant system in once but it

leads to time consuming algorithms which are not adapted to compute real 2D problems.
3.3. Kinetic solver

In this subsection, we will use 2D finite volume formalism described in Section 3.1 to discretize the
kinetic equation (3.11). This will lead to a consistent solver for the homogeneous Saint-Venant system after

integration.

In this subsection, we assume that Pi is an interior point. Given the solution Un
i at time tn for each cell,

we compute Unþ1
i by the following algorithm with three steps:

� Definition of the discrete kinetic density. We define Mn
i ¼ Mðhni ; n� uni Þ with M defined by (3.9).

� Advection scheme. We use the microscopic equation (3.11) with Q = 0. Since this equation is linear, we

can apply a simple upwind scheme [22] which defines a density function f nþ1
i ðnÞ
f nþ1
i ðnÞ �Mn

i ðnÞ þ
Dt
jCij

X
j2Ki

Lijn � nijMn
ijðnÞ ¼ 0; ð3:14Þ
with the fluxes Mn
ijðnÞ computed by the upwind formula
Mn
ijðnÞ ¼

Mn
i ðnÞ for n � nij P 0;

Mn
j ðnÞ for n � nij 6 0:

(
ð3:15Þ
Note however that the density function f(n) is not an equilibrium (see Remark 3.2).
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� Computation of the macroscopic solution. Nevertheless, by analogy with the computations in (3.13), we

can recover the macroscopic quantities Unþ1
i at time tn + 1 by integration
Unþ1
i ¼

Z
R2

1

n

� �
f nþ1
i ðnÞ dn: ð3:16Þ
Remark 3.2. The interpretation is that, as usual, the collision term Q, which forces the relaxation of f to

Gibbs equilibrium M, is neglected in the advection scheme (3.14). And at each timestep we deduce Mnþ1
i ðnÞ

from Unþ1
i which is a way to perform all collisions at once and to recover the Gibbs equilibria without

computing them explicitly.

The numerical consistency of the kinetic solver relies on the fact that if we consider the exact solution of
the homogeneous kinetic transport equation (3.11) with $Z = 0 and Q = 0 – we can prove that the macro-

scopic quantities obtained through the integration process described previously are first-order approxima-

tions in time of the solutions of the Saint-Venant system – see [22].

The numerical feasibility of the kinetic solver relies on two facts. First the possibility to neglect the

collision term in the microscopic advection scheme. Second the possibility to write directly a finite volume

formula, which therefore avoids using the extra variable n in the actual implementation. Indeed, Eq. (3.16)

can be written with the form (3.3) with
F ðUi;Uj; nijÞ ¼ FþðUi; nijÞ þ F�ðUj; nijÞ; ð3:17Þ
and
FþðUi; nijÞ ¼
Z
n�nijP0

n � nij
1

n

� �
MiðnÞ dn; ð3:18Þ

F�ðUj; nijÞ ¼
Z
n�nij60

n � nij
1

n

� �
MjðnÞ dn: ð3:19Þ
From the definition (3.9) of M and the property (3.5), M remains non-negative and (3.18), (3.19) imply
F þ
h ðUi; nijÞ P 0; F �

h ðUj; nijÞ 6 0; ð3:20Þ

where F �

h are the components of the flux related to the water depth h.

If we choose the v function on the form (3.8) we can compute the integrals in (3.18) and (3.19) analyt-

ically and thus the kinetic velocity n does not appear in the resulting kinetic solver that finally looks like a

classical macroscopic flux vector splitting solver. We refer to the next subsection – where we derive a

slightly different scheme – for a presentation of the exact macroscopic formula corresponding to (3.18),
(3.19).
3.4. Numerical implementation

We give here some details on the implementation of the kinetic scheme defined by (3.3), (3.17)–(3.19).

For the efficiency of the method, we code in fact a variant where the choice of the function v depends

on the interface under consideration. For an interface with unit normal n = (nx,ny)
T, we define a local basis

(n,s) associated to the normal direction and to the tangential one. We denote Ûn ¼ ðh; qn; qsÞ
T
, the vector

deduced from U by the rotation in this new basis and û ¼ ðun; usÞT ¼ ðqnh ;
qs
h Þ

T
. So we have Ûn defined by
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Ûn ¼ RnU with Rn ¼
1 0 0

0 nx ny
0 �ny nx

0B@
1CA; ð3:21Þ
and
FþðU; nÞ ¼ R�1
n F̂

þðÛnÞ: ð3:22Þ
Using (3.18), we give the detailed expression of F̂
þðÛiÞ related to the interface Cij
F̂
þðÛi;nijÞ ¼

hi
~c2i

Z
fnnP0g�R

nn
1

n

� �
v

n� ûi

~ci

� �
dn; ð3:23Þ
or, after the change of variables w ¼ n�ûi
~ci
,

F̂
þðÛi;nijÞ ¼

F̂
þ
h

F̂
þ
qn

F̂
þ
qs

0BB@
1CCA ¼ hi

Z
fwnP

�ui;n
~ci

g�R

ðui;n þ wn~ciÞ
1

ui;n þ wn~ci
ui;s þ ws~ci

0B@
1CAvðwÞ dw: ð3:24Þ
Now if we choose the v function of the form (3.8) for the interface under consideration, easy computations

lead to
F̂
þðÛi;nijÞ ¼

~ci
6g

ffiffiffi
3

p
3ðM2

þ �M2
�Þ

2ðM3
þ �M3

�Þ
3ui;sðM2

þ �M2
�Þ

0B@
1CA; ð3:25Þ
where
M� ¼ ðui;n � ~ci
ffiffiffi
3

p
Þþ ð3:26Þ
and the kinetic interpretation leads in this case to a quite simple macroscopic scheme. Note that other

choices of v functions with the same property are possible.

3.5. Upwind kinetic scheme

Note that due to the fact that v(w) is even, the term with ws disappears in (3.24). We obtain an analogous

property for F� and so the flux related to the tangential component looks like
F̂ qsðÛi;nij ; Ûj;nijÞ ¼ ui;s F̂
þ
h ðÛi;nijÞ þ uj;s F̂

�
h ðÛj;nijÞ: ð3:27Þ
In order to reduce the diffusion of the scheme, we slightly modify the computation of this flux. For the com-

putation of qnþ1
i;s we replace (3.27) by the following expression:
F̂ qsðÛi;nij ; Ûj;nijÞ ¼ uij;s F̂ hðÛi;nij ; Ûj;nijÞ; ð3:28Þ
with
uij;s ¼
ui;s for F̂ h P 0;

uj;s for F̂ h 6 0:

(
ð3:29Þ
Formula (3.29) introduces some upwinding depending on the sign of the total flux. In [10] a numerical result

shows the efficiency of (3.28), (3.29).
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3.6. Boundary conditions

The treatment of the boundary conditions is presented in detail in [9]. Here, we just recall some main

features about the computation of the boundary flux F ðUn
i ;U

n
e;i; niÞ appearing in (3.3). The variable Un

e;i

can be interpreted as an approximation of the solution in a ghost cell adjacent to the boundary. As before
we introduce the local coordinates and define Û

n

e;i ¼ ðhne;i; qne;i;n; qne;i;sÞ
T
. Then, we can use the local flux vector

splitting form associated to the kinetic formulation
F̂ ðÛn

i;ni
; Û

n

e;iÞ ¼ F̂
þðÛn

i;ni
Þ þ F̂

�ðÛn

e;iÞ:
On the solid wall we prescribe a continuous slip condition – see Section 2. In the numerical scheme we

prescribe it weakly by defining Û
n

e;i ¼ ðhni ;�qni;n; q
n
i;sÞ

T
. It follows that finally
F̂ ðÛn

i;ni
; Û

n

e;iÞ ¼ 0;
ghni

2

2
; 0

 !T

: ð3:30Þ
On the fluid boundaries, the type of the flow and then the number of boundary conditions depend on

the Froude number. Here, we consider a local Froude number associated to the normal component

of the velocity. For the fluvial cases, we define completely Ue by adding to the given boundary condition,

the assumption that the Riemann invariant that is related to the outgoing characteristic is constant along
this characteristic (see [9]).

3.7. Properties of the scheme

It is clear from (3.3), (3.17)–(3.19) that the scheme is conservative. We established also in Section (3.3)

that the scheme is consistent. Now the CFL condition for the explicit scheme (3.14) applied to the linear

microscopic equation writes
Dt 6 min
jCij

ðLi þ
P

j2Ki
LijÞðjuni j þ wM~c

n
i Þ
; ð3:31Þ
where wM is defined in (3.6). It is obvious from (3.14) to (3.15) that under this CFL condition the non-neg-

ativity of the density function is preserved by the advection scheme. Some computations allow to prove that
this stability property extends to the macroscopic water depth – see the complete proof in Appendix A.

Theorem 3.1. Under the CFL condition (3.31), the kinetic scheme (3.3), (3.17), (3.22), (3.24) preserves the

water depth positivity.

Note also that the computation of the dry areas does not need any special feature.
4. Well-balanced scheme: the hydrostatic reconstruction

In order to be able to compute realistic flows we consider now the case $Z 6¼ 0 and introduce a numer-

ical discretization for the source terms. As motivated in the introduction the fundamental point is to satisfy

the well-balanced requirement, i.e. to preserve a local discrete equivalent of the continuous still water stea-

dy-state (2.6)
8j 2 Ki

hnj þ Zj ¼ hni þ Zi ¼ H

unj ¼ uni ¼ 0

 !
) hnþ1

i þ Zi ¼ H

unþ1 ¼ 0
: ð4:1Þ
i
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In this section, we present a very general way to do that, starting from any consistent homogeneous solver.

As we construct in the previous section a homogeneous solver which is able to ensure the non-negativity of

the water depth, a crucial requirement is to be able to preserve this stability property. The method we pres-

ent is an extension to the two-dimensional flows of the interface hydrostatic reconstruction method we devel-

oped in [3] in the 1D framework.
Given the solution Un

i at time tn for each cell, we compute Unþ1
i by the following algorithm with four

steps:

� Interface topography. We first construct a piecewise constant approximation of the bottom topography

Z(x)
Zi ¼
1

jCij

Z
Ci

ZðxÞ dx:
We define an interface topography
Z�
ij ¼ Z�

ji ¼ maxðZi; ZjÞ: ð4:2Þ
� Interface water depth. From the discrete form of the well-balanced requirement (4.1) we define new inter-

face values by U�
ij ¼ ðh�ij; h�ijuiÞ

T
where h�ij is the hydrostatic reconstructed water depth
h�ij ¼ ðhi þ Zi � Z�
ijÞþ: ð4:3Þ
The fact that h�ij 6 hi, that is an obvious consequence of the definitions (4.2), (4.3), is a crucial point to

ensure the positivity preserving property for the well-balanced scheme (see the proof of Theorem 4.1 in

Appendix A).
� Source term. From the hydrostatic balance
r g
2
h2

� �
¼ �ghrZ;
we introduce an adapted discretization of the source terms
SðUi;U
�
ij; nijÞ ¼

0
g
2
ðh�2ij � h2i Þnij

 !
: ð4:4Þ
This definition allows to ensure the well-balancing property and is consistent with the continuous source

term (see proof of Theorem 4.1 in Appendix A).

� Computation of the solution. Finally, we deduce the well-balanced scheme from the previous homoge-

neous solver by using the interface values introduced in (4.3) instead of the in-cell values in the definition

of the fluxes (3.25), (3.26)
Unþ1
i ¼ Un

i �
X
j2Ki

rijF ðU�;n
ij ;U

�;n
ji ; nijÞ � riF ðUn

i ;U
n
e;i; niÞ þ

X
j2Ki

rijSðUn
i ;U

�;n
ij ; nijÞ: ð4:5Þ
Remark 4.1. The first step of the algorithm is needed to be done only one time at the beginning of the
computation. It is no more the case for the second order case (see next section).

We can now prove that the hydrostatic reconstruction strategy allows us to preserve the still water

steady-state while preserving the positivity property of the homogeneous solver (see the proof in Appen-
dix A).
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Theorem 4.1. The scheme defined by (4.4), (4.5) with (3.17)–(3.19) satisfies the following properties:

(i) it is consistent with the Saint-Venant system with source terms,

(ii) it preserves the water depth positivity under the CFL condition
Dt 6 min
jCijP

j2Ki
Lij ðjuni j þ wM~c

�;n
ij Þ

h i
þ Li ðjuni j þ wM~c

n
i Þ
; ð4:6Þ
a fortiori if Dt satisfies (3.31),

(iii) it preserves the still water steady-state.

Note that this extension of a positivity preserving homogeneous solver to a positivity preserving well-

balanced one does not increase the complexity of the algorithms. Furthermore, only the input values and

not the solver itself are modified.

Remark 4.2. From the definitions (4.2)–(4.4), it is obvious that for Z = Cst, we recover the original

homogeneous scheme.

Remark 4.3. It appears in the proof of Theorem 4.1 that to construct the scheme on the interface values

U�
ij instead of the cell values Ui allows us to numerically preserve at each interface the balance between the

hydrostatic pressure and the influence of the topographic source terms that is associated to the still water

steady-state. This explains the name interface hydrostatic reconstruction method. For further details refer

to [3].
5. ‘‘Second-order’’ extension

In order to improve the accuracy of the results the first-order scheme defined in Sections 3 and 4 can be

extended to a formally second-order one using a MUSCL like extension (see [44]). In Section 5.1, we define
limited reconstructed variables and in Section 5.2, we introduce a ‘‘second-order’’ well-balanced scheme

that preserves the positivity and equilibrium properties of the first-order scheme. See Remark 5.2 about

the quotation marks.

5.1. Second-order reconstructions

In the definition of the flux (3.17), we replace the piecewise constant values Ui,Uj by more accurate

reconstructions deduced from piecewise linear approximations, namely the values Uij,Uji reconstructed
on both sides of the interface. More precisely, we are looking for piecewise linear approximation of the

primitive variable Ŵ ¼ ðh; un; usÞT, actually the detailed expression of the flux given in (3.24) uses the prim-

itive variables.

We divide each cell Ci in subtriangles obtained by joining each edge Cij to the node Pi, we denote Tij the

subtriangle related to Cij (see Fig. 4). We denote |Cij| the area of Tij. Let M be the middle point of the inter-

face Cij, we define Ŵij ¼ ðhij; uij;n; uij;sÞT as an approximation of Ŵ at point M in two steps. First we deduce

Ŵ
ð1Þ
ij ¼ ðhð1Þij ; uij;n; uij;sÞ

T
from a piecewise linear reconstruction on the subtriangle Tij:
Ŵ
ð1Þ
ij ¼ Ŵi þ P iM

!
�rŴij; ð5:1Þ
with rŴij defined here as follows (see [25]).



Fig. 4. Subcells Tij.
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If the point M belongs to the triangle Tk, we denote rŴM ¼ rŴjT k
where rŴjT k

is the constant

gradient of Ŵ deduced from a P1 approximation on the triangle Tk. We denote by rŴi an approximate

gradient at node Pi computed by a weighted average of the gradients on the surrounding triangles
rŴi ¼
P

k2T i
jCkj rŴjT kP
k2T i

jCkj
ð5:2Þ
and
rŴmi ¼ ð1þ bÞrŴi � brŴM ; 0 6 b 6 1; ð5:3Þ

where Ti is the set of triangles surrounding the node Pi.

Then, we use an appropriate slope limiter to deduce rŴij
rŴij ¼ limðrŴM ;rŴmiÞ: ð5:4Þ

In the following computations we have used either the minmod limiter defined by
limða; bÞ ¼
0 if signðaÞ 6¼ signðbÞ;
signðaÞminðjaj; jbjÞ otherwise

�

or the Van Albada limiter defined by
limða; bÞ ¼
0 if signðaÞ 6¼ signðbÞ;
aðb2þeÞþbða2þeÞ

a2þb2þ2e
otherwise

(

with 0 6 e � 1.

But this first linear reconstruction does not ensure the conservativity of the water depth. Thus, we define

hij from hð1Þij and hi in a correction step (see [38])
hij ¼ hi þ bþ
i ðh

ð1Þ
ij � hiÞþ � b�

i ðh
ð1Þ
ij � hiÞ�; b�

i ¼ min 1;

P
j2Ki

jCijjðhð1Þij � hiÞ	P
j2Ki

jCijjðhð1Þij � hiÞ�

 !
:

This second step ensures at the same time the conservation of the water depth
X
j2Ki

jCijjhij ¼
X
j2Ki

jCijj
 !

hi ¼ jCijhi; ð5:5Þ
and some control of the reconstructed values
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hij 2 minðhð1Þij ; hiÞ;maxðhð1Þij ; hiÞ
h i

: ð5:6Þ
It is well known that the linear reconstruction procedure associated to the use of some limiter preserves the

positivity of the water depth. The relation (5.6) shows that our method to ensure the conservation property

(5.5) preserves this positivity property. Thus, the second-order reconstruction is conservative and positivity
preserving.

In the case where B = 0, the formally second-order scheme is obtained by replacing (3.3) by
Unþ1
i ¼ Un

i �
X
j2Ki

rijF ðUn
ij;U

n
ji; nijÞ � riF ðUn

i ;U
n
e;i; niÞ: ð5:7Þ
This means that, once the reconstructed values are computed at the middle of the interface, we assume that

the variables are constant on each side of the interface and we apply again a locally 1D solver.

5.2. ‘‘Second-order’’ well-balanced scheme

For the cases where B 6¼ 0 we consider also piecewise linear approximation of the variable Z and

we reconstruct values Zij,Zji on both sides of the interface as it is done before for the primitive vari-

ables. In fact, so that the formally second-order scheme preserves the well-balanced property, it is nec-

essary that the formally second-order reconstruction preserves an interface equilibrium. It means that

if
hi þ Zi ¼ hj þ Zj ¼ H ; ui ¼ uj ¼ 0; ð5:8Þ

then the ‘‘second-order’’ reconstructed values have to satisfy
hij þ Zij ¼ hji þ Zji ¼ H ; uij ¼ uji ¼ 0: ð5:9Þ

The velocity part is obvious but, as we require also that the ‘‘second-order’’ reconstruction pre-

serves the positivity of the water depth, it is proved in [3] that the right way to build a well-balanced

formally second-order scheme is to reconstruct and correct the variables h + Z and h and then to de-

duce the interface values for Z – see [3] for further explanations, especially for the case of dry/wet

interface.

Given the solution Un
i at time tn for each cell, we thus compute Unþ1

i by the following algorithm with five

steps:

� ‘‘Second-order’’ reconstruction. We define ‘‘second-order’’ reconstructions of the primitive variables as it

is described in the previous subsection. We also apply the same techniques to obtain a ‘‘second-order’’

reconstruction of the free surface.

� Interface topography. From these ‘‘second-order’’ reconstructed values we derive ‘‘second-order’’ recon-

structed values Zij for the topography. Then, we define an interface topography
Z�
ij ¼ Z�

ji ¼ maxðZij; ZjiÞ: ð5:10Þ
� Interface water depth. We define new hydrostatic reconstructed interface values by U�
ij ¼ ðh�ij; h�ijuijÞ

T

with
h�ij ¼ ðhij þ Zij � Z�
ijÞþ: ð5:11Þ
� Source term. We define an interface source term
SðUij;U
�
ij; nijÞ ¼

0
g
2
ðh�2ij � h2ijÞnij

 !
: ð5:12Þ
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By contrast to the first-order scheme, we also introduce a centered source term to satisfy the consistency

of the numerical scheme
ScðUn
i ;U

n
ij; Zi; Zij; nijÞ ¼

0

� g
2
ðhij þ hiÞðZij � ZiÞnij

� �
: ð5:13Þ
� Computation of the solution. Finally, we write the formally second-order well-balanced scheme by intro-

ducing the new interface values (5.11) in the fluxes (3.25), (3.26)
Unþ1
i ¼ Un

i �
X
j2Ki

rijF ðU�;n
ij ;U

�;n
ji ; nijÞ � riF ðUn

i ;U
n
e;i; niÞ þ

X
j2Ki

rij½SðUn
ij;U

�;n
ij ; nijÞ þ ScðUn

i ;U
n
ij; Zi; Zij; nijÞ
:

ð5:14Þ
Remark 5.1. Note that there is now two sets of interface values: first the ‘‘second-order’’ reconstructed val-

ues deduced from the in-cell values, second the hydrostatic reconstructed values deduced from the ‘‘second-
order’’ reconstructed values.

As in the first-order case we can now prove that the hydrostatic reconstruction strategy allows us to pre-

serve the still water steady-state while preserving the positivity property of the homogeneous solver – see the
proof in Appendix A.

Theorem 5.1. The formally second-order scheme defined by (5.14), (5.13) with (3.17)–(3.19) satisfies the

following properties:

(i) it preserves the water depth positivity under the CFL condition
Dt6min min
i2Si

min
j2Ki

jCijj
Lij ðjunijj þwM~c

�;n
ij Þ

;min
i2Gi

max
06a61

a
jCij

Li ðjuni j þwM~c
n
i Þ
; ð1� aÞmin

j2Ki

jCijj
Lij ðjunijj þwM~c

�;n
ij Þ

 !" #
;

ð5:15Þ

(ii) it preserves the still water steady-state.

Remark 5.2. Note that we do not prove here that the scheme is second-order accurate. A complete proof

would suppose more sophisticated reconstructions as ENO or WENO reconstructions – see [3,1,28]. We do

not use them here for two reasons. First our main goal is to derive a stable and accurate but simple scheme

that can be used for industrial purposes. Second we show in the next section that our simpler ‘‘second-

order’’ reconstruction has already a great impact on the accuracy of the results. Moreover, we consider

some tests for which analytical solutions exist and we exhibit that the second-order accuracy is obtained.

Let us also precise that second-order accuracy in time is obtained as usual by a Runge–Kutta method
(the CFL condition need not be modified).
6. Numerical results

We present here the numerical results of different test problems. We begin with the two-dimensional

version of a classical ideal test problem extracted from [23] and commonly used (see, e.g. [12,17]): a

stationary flow over a parabolic bump for which an exact solution is known. We consider a rectangular

channel of length 20. and width 2. (we assume a non-dimensionalized problem), the bottom is defined

by



Fig. 5.
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Zðx; yÞ ¼ 0:2� 0:05ðx� 10:Þ2 if 8: 6 x 6 12: 8y;
0: elsewhere:

(

Depending on the values of the boundary conditions, we compute three different flow situations defined as

follows:

� fluvial flow

inflow: qg = (4.42,0)T, outflow hg = 2,
(a) (b)

(c) (d)

(e) (f)

Stationary flows over a bump: (a) fluvial flow – free surface; (b) fluvial flow – convergence rate; (c) transcritical flow – free

e; (d) transcritical flow – convergence rate; (e) transcritical flow with shock – free surface; (f) transcritical flow with shock –

gence rate.
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� transcritical without shock (torrential outflow)

inflow: qg = (1.53,0)T, initial water depth h0 = 0.66,

� transcritical with shock

inflow: qg = (0.18,0)T, outflow hg = 0.33.

The given discharge is prescribed for each node of the inflow boundary. The initial solution is given by
q0 = qg, h

0 = hg. The three flows are computed on a rather coarse unstructured mesh of 510 nodes and 886

triangles (60 edges on the length and 6 edges on the width). In Figs. 5(a)–(c) and (e), the free surface profiles

computed with the first-order and ‘‘second-order’’ schemes are compared to the exact solution. In these fig-

ures we have plotted only the points on the line y = 0 since the two-dimensional effects are negligible as

shown in Fig. 6 where all the points of the free surface are plotted for the transcritical case. Results are

quite good for such a coarse mesh. The improvement due to the formally second-order extension appears

to be noticeable for all the cases. Note in particular the improvement on the computation of the free surface

on the left side of the bump for the three cases and on the right side of the bump for the second case, i.e.
where the water depth is not prescribed by the boundary conditions. Note also that the presence of a sonic

point in the two last test cases does not need a special treatment.

In order to show the improvement due to the formally second-order reconstruction it appears inter-

esting to look at the convergence rate of the error versus the space discretization for the three above

problems. We have plotted in Figs. 5(b), (d) and (f), the log(L1-error) of the water depth versus lo-

g(ha0/ha) for the first and the ‘‘second-order’’ scheme and they are compared to the theoretical order

(we denote by ha the average edge length and ha0 the average edge length of the coarser mesh). These

errors are computed on five meshes with 10, 20, 30, 40 and 60 edges on the length of the channel. These
meshes are very coarse, nevertheless, it appears that the computed convergence rate are not far from the

theoretical ones, the formally second-order scheme provides an effective convergence up to the second-

order when the flow is sufficiently smooth and according to the estimations, the ‘‘second-order’’ scheme

reduces to first-order near a discontinuity.

The second test problem is one of the tests of the Telemac code developed at EDF/LNHE [26], it con-

cerns a water drop in a basin and we look at the solution after some reflections on the walls. The basin is a

20. · 20. square box with flat bottom, the initial solution shown in Fig. 7(a), is defined by
h ¼ 2:4ð1:þ e�0:25½ðx�10:05Þ2þðy�10:05Þ2
Þ; u ¼ 0:
The solutions at t = 1.,2.,3., 4. s obtained with the ‘‘second-order’’ approximation are given in Figs. 7(b)–

(e) while the solution at t = 4. s, damped by the first-order scheme is shown in Fig. 7(f). This result shows

the accuracy improvement due to the ‘‘second-order’’ scheme, even for a problem with complex 2D

interactions.
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20

2ND ORDER
EXACT

Fig. 6. Transcritical flow over a bump. Free surface.
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The third test problem is a real life application, it concerns the Malpasset dam break. All the details on

the data and a reference solution computed with the Telemac code are given in [27]. We present here in Fig.

8, the initial solution and the ‘‘second-order’’ solutions at t = 1000 s and t = 2500 s. These solutions are in

good agreement with solutions obtained by other methods in [27]. The computation of this problem allows

us to test, among others, the ability of the method to treat the still water (the sea area before the wave
reaches it) and the wet–dry interfaces – which do not need any special treatment with our method.
Fig. 7. Water drop in a basin: (a) t = 0 s; (b) ‘‘second-order’’, t = 1 s; (c) ‘‘second-order’’, t = 2 s; (d) ‘‘second-order’’, t = 3 s; (e)

‘‘second-order’’, t = 4 s; (f) first-order, t = 4 s.

Fig. 8. Malpasset dam break: (a) initial solution; (b) t = 1000 s; (c) t = 2500 s.
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7. Conclusion and outlook

In this article, we have introduced on one hand a stable homogeneous two-dimensional kinetic solver

and on the other a hydrostatic reconstruction method to compute the source terms while preserving the

stability properties of the homogeneous solver. We have also presented a formally second-order compatible
extension. Thanks to these three ingredients we finally derived a positivity preserving well-balanced ‘‘sec-

ond-order’’ scheme. We emphasize that this solution method seems to be a good compromise between effi-

ciency, stability and accuracy. These properties are experimentally verified by using the algorithm to

reproduce complex physical phenomena.

Moreover, let us note some extensions that can be derived. The stability properties of the kinetic solver

can be used to derive stable schemes for avalanche flows [35] and can be extended to a multilayer Saint-

Venant model [2]. An extension of the hydrostatic reconstruction that preserves all the 1D subcritic stea-

dy-states is under investigation and the same idea can be adapted to take into account the relation between
the Darcy equation and the Saint-Venant system with strong friction coefficient. Note also that – if we con-

sider a more sophisticated v function – the semi-discrete version of the presented well-balanced scheme sat-

isfies an in-cell entropy inequality (see [3] for a 1D proof). The extension of this property to the fully

discrete scheme is under investigation.
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Appendix A

Proof of Theorem 3.1. (Homogeneous kinetic solver) Suppose that we have hni P 0. We want to prove that

hnþ1
i P 0. We give the proof for a general v function. It includes of course the particular choice (3.8). It

follows from the definitions (3.3), (3.17), (3.22), (3.24) that
hnþ1
i ¼ hni �

X
j2Ki

rn
ijðF̂

þ
h ðÛ

n

i;nij
Þ þ F̂

�
h ðÛ

n

j;nij
ÞÞ � riðF̂

þ
h ðÛ

n

i;ni
Þ þ F̂

�
h ðÛ

n

e;iÞÞ: ðA:1Þ
The relations (3.20) and (3.22) imply
F̂
�
h ðÛ

n

j;nij
Þ 6 0; F̂

�
h ðÛ

n

e;iÞ 6 0; ðA:2Þ
and using the expression for the flux (3.24), we have
hnþ1
i P hni 1�

X
j2Ki

rij

Z
fwnP

�ui;nij
~ci

g�R

ðui;nij þ wn~ciÞvðwÞ dw� ri

Z
fwnP

�ui;ni
~ci

g�R

ðui;ni þ wn~ciÞvðwÞ dw
 !

:

ðA:3Þ

Since v satisfies (3.5)–(3.7), we have for each n
Z

fwnP
�ui;n
~ci

g�R

ðui;n þ wn~ciÞvðwÞ dw 6 jui;nj þ ~ci

Z
fwnP0g�R

wnvðwÞ dw; ðA:4Þ

http://www.hyke.org
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and from (3.5), (3.6) we deduce
Z
fwnP0g�R

wnvðwÞ dw 6

Z
f06wn61g�R

vðwÞ dwþ
Z
fwnP1g�R

w2
nvðwÞ dw 6 1: ðA:5Þ
Finally, using (A.4), (A.5) in (A.3), we obtain
hnþ1
i P hni 1� Dt

jCij
X
j2Ki

Lij jui;nij j þ ~ci
� �� �

þ Li jui;ni j þ ~cið Þ
" # !

;

and it follows the positivity of hnþ1
i under the CFL condition (3.31) (from (3.7) we have wM P 1). h

Proof of Theorem 4.1. (First-order well-balanced scheme) For (i) we suppose that the homogeneous solver

is consistent. Then, the consistency property for the whole scheme is related to the following alternative

form for the source term (4.4)
SðUi;U
�
ij; nijÞ ¼

0

�g
h�ijþhi

2
fDZ ijnij

� �
;

where fDZ ij ¼ minðhi; ðZj � ZiÞþÞ. Using this relation we prove in [3] that the scheme is consistent in the
sense that is given in [7].

For the non-negativity property (ii), the key-point is that the definitions (4.2), (4.3) imply that h�ij 6 hi. It
follows that the out-fluxes are smaller than those of the corresponding homogeneous case. Thus, the

positivity preserving property of the homogeneous solver is obviously preserved. More precisely, in the

particular case of the kinetic solver, we can first prove as in Theorem 3.1 that the water depth positivity is

preserved under the CFL condition (4.6). Then, we deduce from the relation h�ij 6 hi that the CFL

condition (3.31) is more restrictive than (4.6).

To prove the preservation of the still water steady-state (iii), we assume that the solution at time tn

satisfies (4.1), then we have
X
j2Ki

rijF ðU�;n
ij ;U

�;n
ji ; nijÞ ¼

X
j2Ki

rij

0
g
2
h�2ij nij

 !
: ðA:6Þ
Concerning the boundary term, we assume also that the boundary conditions will preserve the steady-state

(they can be either a slip condition, a given flux q = 0 or a water depth given h + Z = H). Following the

treatment of the boundary conditions developed in [9] the boundary term reduces to
riF ðUn
i ;U

n
e;i; niÞ ¼

0
g
2
h2i ni

� �
: ðA:7Þ
From (4.4) to (4.5), we obtain finally – a part of the source terms (4.4) is balanced by the fluxes (A.6)
Unþ1
i ¼ Un

i �
X
j2Ki

rij

0
g
2
h2i nij

� �
� ri

0
g
2
h2i ni

� �
: ðA:8Þ
Using the property
X
j2Ki

Lijnij þ Lini ¼ 0;
and the definition (3.4) of rij and ri, this proves the preservation of the still water steady-state. h

Proof of Theorem 5.1. (‘‘Second-order’’ well-balanced scheme) To prove the non-negativity property (i), we

follow the idea developed in [7] for the 1D problem. First we assume that Pi is an interior node. Using (3.17)

and the definition (3.4) of rij, the scheme (5.14) defines hnþ1
i by
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hnþ1
i ¼ 1

jCij
jCijhni �

1

Dt

X
j2Ki

LijðF þ
h ðU

�;n
ij ; nijÞ þ F �

h ðU
�;n
ji ; nijÞÞ

" #
: ðA:9Þ
Using (5.5), we have
hnþ1
i ¼ 1

jCij
X
j2Ki

jCijjhnij �
Lij

Dt
ðF þ

h ðU�;n
ij ; nijÞ þ F �

h ðU�;n
ji ; nijÞÞ

	 

: ðA:10Þ
To verify the positivity of hnþ1
i , it is sufficient to have
jCijjhnij �
Lij

Dt
F þ

h ðU�;n
ij ; nijÞ P 0 for j 2 Ki: ðA:11Þ
Using the relation h�ij 6 hij and adapting the proof of Theorem 3.1, we obtain that the inequality (A.11) is

satisfied under the condition (5.15).

If Pi is a boundary node, we have
hnþ1
i ¼ 1

jCij
jCijhni �

1

Dt

X
j2Ki

LijðF þ
h ðU

�;n
ij ; nijÞ þ F �

h ðU
�;n
ji ; nijÞÞ �

Li

Dt
ðF þ

h ðU
n
i ; niÞ þ F �

h ðU
n
e;i; niÞÞ

" #
: ðA:12Þ
Then using (5.5), we can write
jCijhi ¼ ajCijhi þ ð1� aÞ
X
j2Ki

jCijjhij; 0 6 a 6 1; ðA:13Þ
and with the same arguments as previously, we obtain the positivity of the water depth under the condition

(5.15).

The proof of the preservation of the still water steady-state (ii) is very similar to the proof for the first-
order case. The computed fluxes (A.6) and (A.7) are unchanged and since we have the centered source term

(5.13) we obtain
Unþ1
i ¼ Un

i �
X
j2Ki

rij

0
g
2
h2ijnij

 !
�
X
j2Ki

rij

0
g
2
ðhij þ hiÞðZij � ZiÞnij

� �
� ri

0
g
2
h2i ni

� �
: ðA:14Þ
Since the ‘‘second-order’’ reconstruction preserves the still water steady-state, we have
hij þ Zij ¼ hi þ Zi:
Thus, (A.14) reduces to (A.8) and the conclusion is the same. h
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